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Abstract

In this paper a variational inequality model is created for the elastoplastic contact problem, in which the constraint
of the constitutional relation for elastoplastic material and the contact condition are relaxed totally. It gives an effective
and strict mathematical modeling for the problem. The quadratic programming is used here for the numerical solution.
This algorithm has great advantages of convergence and computational effectiveness over the conventional methods,
avoiding the tedious procedure of iterations. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is well known that the contact problems widely exist in engineering practice. For example, in most of
the mechanical facilities for transmission of motion is carried out through the contact forces; also the large
dames are always working under the contact conditions, because of the indispensable construction slits in
concrete and the soft layers in the basis. So far, this contact problem has attracted great interest of scientists
and many research works on theoretical and numerical analysis can be found in China and abroad (see e.g.
Alart and Curnier (1991), Christensen et al. (1998), Michalowski and Mroz (1978), Oden and Carey (1984),
Stadter and Weiss (1979), Torstenfelt (1983) and Wang et al. (1982)). However, most of them are too
complicated, such as the Newton method (see e.g. Alart and Curnier (1991) and Christensen et al. (1998)),
where the conventional step by step loading and progressive iterations are usually adapted.

Generally, the contact surface between the related bodies is indefinite; it depends on the loads. Similar to
the elastoplastic problem (see e.g. Chen (1982), Guo and She (1992), Lions (1967) and Zienkiewicz et al.
(1975)), the contact problem also belongs to those variational problems with indefinite boundaries. In case
of the contact between elastoplastic bodies the constitutive relation and the constraint of contact state are
taken as the essential non-linear behaviors which control the entire process of deformation, but in the
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classical variational method (see e.g. Carey and Oden (1984)) the variables are required to be unconstrained
in their own regions of definition. As a result, the analysis of these problems is very complicated.

The mathematical modeling of the linear and non-linear elastic contact problems with friction is de-
scribed by Bjorkman et al. (1995) and Klarbring et al. (1990, 1991) using the variational inequalities, and
the conventional methods, such as sequential quadratic programming (see e.g. Bjorkman et al. (1995)) are
taken for their numerical solutions.

In this paper, the contact problem and the elastoplastic problem are unified and described by the
variational inequality model, from which a functional with the relaxed constitutive relation and the contact
restriction is obtained. Furthermore, for the sake of simplicity in computation, the quadratic programming
is adopted here to transform the non-linear problem to a complementary linear problem. The presented
procedure for numerical solution has great advantages in requirements of CPU time and storage.

2. The differential description for the elastoplastic contact problem

2.1. Contact state equations

In a contact problem (Fig. 1) the law of friction is non-linear. The contact force and the relative dis-
placement may be represented as:

PC:{Pévplﬁpﬂ}T (1)

ey

EENE (T ug’ — u (2)
&y W — 40 & ay

where a is the clearance between two bodies.

The sliding conditions are:
Sy =P+ Py = (P2 + P) + 7P <0 3)
f=P,<0

In the space of the contact forces P:P:P,, the sliding surface, represented by fl =0, is a conical surface
(see Fig. 1).

Fig. 1. The contact problem.
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Taking the Taylor series expansion for f, (k = 1,2) at the point P, we may obtain

0 9
fi=1+ (fk> dP. <0, k=1,2 4)
where f, = fk(PCO), g;’ = %‘ , are the given values related to the state of the last increment.
Making the partition: <’
dée =de° +dé° (5)

where dé° is the elastic relative displacement, dé* the relative sliding displacement.
Define the sliding potential functions g, and g,, corresponding f;, f, as

5 1/2
(1))
gZ Pn

Then the relative sliding displacement dé* can be written as

-5

The increments of the contact force and the elastic relative displacement satisfy the Hooke’s law

~ ~ 2 ~ ag >> ~ < ag >T~
dP.=Dd&#=D(di - 4| 2()|=D|dé—- y (7)
(- 3A( %

where

g

0
0
E,

D=

oo
oMo

E:, E;, E, are the elastic moduli in the directions ¢, {, n.
The contact state equations can be written as

fi=f04 <6f"> DdéZ(Sﬁ) D(Zi{)ijgo (8)

2.2. The elastoplastic constitutive equations

It is known that the yield condition can be written as
f(o,],sl],k)go (10)

where f < 0 for the elastic stage and f = 0 for the plastic stage.

According to the flow theory, the increment of the plastic deformation de’, 1, 1s orthogonal to the surface of
the plastic potential g(o;, ", k) = 0 and may be written as ds = /0g/00;;, where / is the parameter of the
plastic flow.

ij?
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For a surface of plastic potential, which can be approximated by several (say m) smooth surfaces, the

flow relation is

m

08
Z) 00

where

, ] =0, f,<0 _
AM{>O’ =0 a=1,2,3,...,m

The increment of deformation consists of two (elastic and plastic) parts as
_ ¢ P
dﬁij = dgij + dgij
For the elastic part dej, we have
dO'l*j = Dijkl d&'zl

The yield function (10) can be expanded in Taylor series

_ 70 .le a,fo( P afoc

Here (0f,/ 83};) dg}’. exists only for strain hardening materials which can be described as

( o > Ztu)u/f

and [1,4] is a positive definite matrix.
When the equal-axial hardening is considered, the hardening function can be linearized as

dk = hi

h is a constant.
Then from Eq. (14) we have

0f
fO ( 5 )do‘U Ztl,;/l,;éo

ij

where tyy = taﬁ + 11(/; h/;
Substitution of Egs. (12) and (13) in Eq. (15) yields

of, “ of., 6
fo (({)Dijkldgkl_Z(a(J;_ ,jk,ag +taﬁ))ﬁ<0

ij B i

From Egs. (11) and (16) we get

Z(%Dumagﬁ + toc/f>;/f B (%)Dm{/d% —f =0
p=1 N ’

L = 0f g of., ,

p=1
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In the incremental theory, the equilibrium equation, the continuity equation and the boundary condi-
tions are

doy,; +dfi=0 in Q (19)
de; = (duy; + du,)/2 (20)
do;n; =dP, on[Ip (21)
du;=du’ onTr, (22)

Egs. (8), (9) and (17)—(22) are the differential equations for the elastoplastic contact problems.

3. The variational inequality formulation

As for the elastoplastic problems the physical variables, those like the displacements u; (i = 1,2,3),
strains ¢, stresses o;;, contact displacements ¢;, contact force P,; are the state variables of the system. Some
of them can be derived from the basic variables. So the displacements are taken as the state variables and
the flow parameter A, 1 as the control variables. Defining the following spaces (notation “d ” for the in-
crements will be omitted for simplicity):

H{(Q) = {ulu € Hi(Q),ul,, ="}, H(Q) = {ulu € H\(Q),ul, =0}

1

H,(Q) = (H(Q)’, H

1(Q) = (H{(2)),
L(Q) = (L(Q))",  L(Q) = (L2(Q))
K = {{u, 2, 3, 2,7} € H{(Q) x Lo(Q) X Lo(Q), Ju> 0,05 >0,0=1,2,...,m =12}
where H;(Q) is the Sobolev space and L,(Q) the Hilbert space.
Consequently, we obtain the following variational inequality formulation equivalent to Egs. (8), (9) and

(17)+(22) as. 3
Find {u, A, A} € K, such that

a(u,v—u) — b —u, )+ a(u,v—u) —b(v —u, ) +c(r — 2,2) —d(u,r — 2) + j(r — 1)

S S } (23)
+c(F—AMA) —du,F—A)+jF—-2)=Llv—u) V{v,rnr} ek
where
a(u,v) = /gij(u)Dijklgkl(v)an
Q
b(v r)—/r Og D,y (v)dQ
) - o o aO'jj ijkl ©kl
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i) == [ nsan
= TrdQ Tpdr
L(v) /Qv S +/FPU P

a(u, v) = /F #(0)Di(u) I
~ 08 T
_ / Z(@;) Dii(v)dr
e\ ~( 98-
1= [ 3(5) ol ik oo
/M%) o

- / > Rdr
e g
The equivalence of Eq. (23) and the conventional description of differential equations for the

plastic contact problems can be proved.
Assuming that {u, 4, 1} € K, from Egs. (19)—(22), we obtain

2
/(O-ijj —|—f,)a),dQ :/ (6,:,—?1_,— _R)wzdr+2/( ) wiPcidF7 V(,O € H?(Q)
Q Ip a1 YT

Owing to

/O’,‘]“/‘O),‘dQ:/ O'ijnjwidF—/O',‘iSiidQ,
0 I 0

and taking notice of the sign of the local coordinates on the contact boundary, it follows

2
Z/ COI-PC,-dFZ/ w,-PC,-dF—f—/ (,Ul'PcidF:/ (/OEZ)PC,dF—/ a)lmPc,-dF
= r) re re !
= / (@ — o"\P,dI = / &(w)P,dl
Ie Ie

Substitution of Egs. (25) and (26) in Eq. (24) leads to

Q F(y Q I'p

or in vector form

elasto-

(26)
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/QgT(w)D<s(u)—Z<%5;> >d9+/rc T(w)D 5(@-2(2%)2, dr
:/QwadgH—/F w"Pdr (28)

Ifwesetv=u+we ﬁ:(Q), the above equation will be
a(u,v—u) —b(v—u, )+ au,v—u) — b(v —u,2) = L(v — u) (29)
From Egs. (8) and (9) we have

/Q { [(aﬂ) D(Sfi), SQDU f?]}(fk—ﬂik)dwo (30)

or
A=) —du,f— ) +jF—2) =0, VFel(Q), />0 (31)
Similarly, from Egs. (17) and (18) we can write
/Z{ Kaf“) (aag,,) +zx4ﬂﬁ (Zf;f)m(u) —ff}(ra—ia)dQ >0
VrelyQ), >0, a=1,2,....,m (32)
or
cOnr—2)—du,r—i)+jlr—2)=0 VreLy(Q), r,>0 (33)

Then the inequality formulation (23) can be obtained by summing up Egs. (29), (31) and (33).
Otherwise, taking {v,r,7} = {u+ w, 2,4} € K in Eq. (23), and considering the bilinearity of a(u,v),
a(u,v), b(v,r), b(u,A) and L(v), it gives
a(u, ) — b(w, 1) + a(u, ) — b(w, 1) = L(w) (34)

which is identical with Eq. (29). And thus the satisfaction of Eqgs. (19)—(22) is proved easily.
Eqgs. (34) and (23) yield

c(hyr—2) —d(u,r — 2) + j(r — 2) + &(A, 7 — A) — d(u, 7 — 1) + j(F — ) = 0 (35)
Setting » = 4, we have

(A F—2)—du,i—A)+jF—2)=0 (36)
Setting 7 = 24, 7 = 0 (and consequently 7 € L,(Q)) we get

&2, 2) —du, 2)+ j(2) =0 (37)

which leads to Eq. (9) by expansion.
Substituting Eq. (37) into Eq. (36), we have

¢4, F) — d(u,7) + j(7) = 0 (38)

which leads to Eq. (8) by expansion.
In the similar way, setting 7 = A, r = 24, r = 0 in Eq. (35), we obtain

c(Ar—A) —dur—2)+jir—2)=0 (39)
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(4 2) —d(u,2) +j(2) =0 (40)
Consequently, it gives

c(Ayr) —d(u,r) +j(r) =20 (41)

Making expansion of Egs. (41) and (40), we can get Egs. (17) and (18). Now the equivalence of these two
forms is proved.

4. The finite element discretization and the solution by quadratic programming
4.1. Finite element discretization

The body Q under investigation is divided into E; elements, including n; (n; <E,) elastoplastic ele-
ments. The yield postulate of the eth element consists of L, (L, = 1) smooth yield conditions, and then the
number of the state equations for the system is L = ) "' | L., the contact boundary I'. is divided into n,
contact elements I'. = Y "> | I'?. The number of sliding conditions for the eth elementis /,, andis / =) _"> | I,
totally.

Introducing the operator B, the shape functions N for the displacement and N for the relative dis-
placement, we obtain the inequality form (23) in finite element discretization as

(0 —0)"(Ké—Pi—q)— (r—2) (CO—Ui—d)=0 (42)

where

Es ny
_ T 7T 1
K_Z]:/Q?B DBdQ—i—Z/ NTDNdr

q= _{/NdeQJr/r

NTPdF}

fm

P

C= nlli/m(aafg) DBdQ+§;§;/( j)TWdF
o=35 [ [(F)e(E) o S5 ()

d= i/gef(kd(z iZ/gﬁedF

e=1 o=1

:1,2,...714,3, egnl _
o=1,2,....0, e>n 6—1727~--7n1+n2}
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Taking notice of the arbitrariness of {¢,r}, the following form, equivalent to Eq. (42), can be derived
as

Kéo—®l—q=0 (43a)

Co—Ui—d<0 (43b)

JNCO—Ul—d)=0 (43c)
Involving a relaxation variable v > 0, Egs. (43b) and (43c) will be

Co—Ul—d+v=0 (44a)

Mo =2"(=Co+Ui+d)=0 (44b)

Then Egs. (43a), (44a) and (44b) can be written as
v -U C )\. d
o]<[% &7 “
v'A=0, v=0, 41=0 (46)
The above equations are the finite element discrete formulae of the elastoplastic contact problem. In fact,

it can also be described in a form of the linear complementary problem with a free variable, as it will be seen
in the next section.

4.2. The algorithm of quadratic programming

It is known that a standard quadratic programming problem is defined as (see e.g. Heesterman (1983)):

1
minimize f(x) = ExTAx +b'x (47)
subject to : Cx<d (48)
x=0 (49)

wherexe R", A e R™", be R", C € R"™", d € R".

Based on Kuhn-Tucker’s necessary and sufficient conditions of optimum solution, the standard qua-
dratic programming is equivalent to the following complementary problem.

The complementary problem is defined as:

Find w € R", z € R", satisfying

w—Mz=gq

wiz=0, w>0, z>0

where M € R™", g € R" are given values.

Eq. (50) can be solved by the Lemke algorithm (see e.g. Ravindran and Lee (1981)).

In actual problems there are no special requirements of non-negativity for the variables like reaction
force, displacement, stress, etc. So the quadratic programming problem is described as:
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Assuming x € R"

minimize f(x) = %xTAx +b'x (51)

subject to : Cx <d (52)

where 4 € R™", C € R™", b € R", d € R" are given values.
Comparing with Egs. (47)-(49), we have no condition of x > 0 here, so we may write Egs. (51) and (52)
in form of a standard quadratic programming problem by using the transformation of

x=x x>0 x>0

However, the number of variables will be two times more, resulting in more requirements of CPU time
and storage. Thus a new approach is worth to be recommended.

Assuming that A4 is a positive definite matrix and C is a full-rank matrix and involving the Lagrange
multiplier 1 € R™ to relax the constraint conditions (52), we obtain

L= %XTAX +b"x + T (Cx — d) (53)
According to Kuhn-Tucker’s conditions we have 4 > 0 and may derive the following relations:
Ax+b+CT7 =0 (54)
Cx—d<0 (55)
A (Cx—d)=0 (56)

Introducing a relaxation variable v > 0 (v € R™). Egs. (54)-(56) may be rewritten as
0 -C

v B d
0 cT 4 ) (57)

Jv=0, 1>0, v=0 xecR

)L

X

Comparing with Eq. (50), here the condition x > 0 is in default.

Eq. (57) describe the linear complementary problem with a free variable. Compared with Egs. (45) and
(46), these two sets of equations have no difference in form. It can be solved by a new approach of quadratic
programming.

Firstly, transforming the augmented matrix of Eq. (57)

(1, 0 C d
0 —-C' -4 b} (58)
. o .1, ca!
and making the left multiplication of matrix ERRE have
(1, —CA'CT 0 d+CA'b 59
0 —A'CT I, A (59)

Setting
P=A'C", V=4
Q=CP, d=d+Ch

Eq. (57) can be turned to a new linear complementary problem:
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v 0 off4] [a
0 P L||x| |¥ (60)
JTo=0, 1=0, v=0

Secondly, from Eq. (60), we can get an initial solution as:
v=d, A=0x=-b

If &’ > 0 all conditions are satisfied, that means the solution is found simply.
If d’ < 0 the solution should be found for a new linear complementary system by introducing an artificial
variable Z, (Zy = — min {di’,i =1,2,... ,m}).

o 01[4] [zin] [a]
x o | |w| 1 (61)

P I,
JTv=0, 1=0, v=0, Z =0

v
0

Thus we may obtain an almost complementary basic feasible solution:
v=d + Zyiy, 2=0, x=-b (62)

Eq. (62) is not a feasible solution of the original problem due to the involvement of Z,. The solution of
Eq. (57) can then be found by use of Lemke algorithm, in which the base exchange between A and v should
be made until Z; is being removed.

In solution by the quadratic programming the main workload is the exchange between the comple-
mentary bases A and v. A base exchanging operation is equivalent to that for a Gauss Jordan matrix
elimination. Even if all the elements enter the plastic state, only S (S<L + 1) operations are needed.
Similarly, for the contact state equations only S’ (S’ </ + 1) operations are used. Hence, totally there are
S+ S8 (<L+1+2) base exchanges at most. It shows great advantages in convergence and convenience,
compared with the conventional iterative methods, where both the yield conditions and the contact rela-
tions should be diagnosed in every iteration.

5. Numerical examples

To show the applicability and effectiveness of the theory described in this paper, three test examples are
presented.

Example (1) — Contact problem between two thick tubes with infinite length

The classical contact problem of two thick tubes with infinite length is studied. The tubes are pushed
together by the forces P as shown in Fig. 2. Young’s modulus E, Poisson’s ratio v, the inner radius r and the
outer radius R were taken equal to 9.8 x 108 N/m?, 0.3, 10.0 and 16.0 cm.

The contact zone is what we should follow with interest. The discretization is made for the region shown
in Fig. 3.

Fig. 4 shows the finite element mesh of the contact region (shadowed in Fig. 3).

The results for the contact radius are given in Table 1. Comparing with the Hertz solution, the relative
error is caused mainly by the discretization of the contact boundary.

The comparison for the contact force is shown in Fig. 5. It must be pointed out that, when P equals
1.96 x 10° N/m, the numerical result obtained by the author is a little bit smaller than that of the Hertz’s.
But in this case the Hertz’s solution is not an exact one when a few elements have already entered the plastic
stage.



8144 X. Guo et al. | International Journal of Solids and Structures 38 (2001) 8133-8150

P

o The contact
region
6 |

P

B

N

Fig. 2. Two thick tubes with infinite length.

4 Y P/2

The contact
region

SAANANNNANNANNNNY

77

Fig. 3. The location of the contact region.

Example (2) — The contact problem of a hexahedron rock specimen subjected to pressure
A hexahedron rock specimen, subjected to pressure by two rigid plates (see Fig. 6) is studied. Assume
that the coefficients of friction i between the specimen and the rigid plates are the same, the initial interval
ap = 0, the material of the specimen follows the Mohr—Coulomb yield postulate
f=t4+o,tanp — C<0
g=1+ Yo, tanp +1¢

where  is a factor of expansion.



Table 1
The contact radius (cm)
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Fig. 4. The finite element mesh of the contact region.

P (N/m)

Contact radius

Hertz solution

Present method

Relative error

0.98 x 10°
1.96 x 10°

0.0434
0.061

0.04
0.06

7.10%
1.67%

2001

1804

160

140
120

1004

P(x9.8 kKN/m*)

P=19.6x10°'N/m

804
—  Hertz Solution
604 x  Numerical Solution
40+
204
A A A A X(cm)
0 001 002 0.03 004 005 006

Fig. 5. Comparison for the contact force.

When y = 1, this form yields the associated postulate, and for y» = 0, the non-associated postulate
without plastic expansion.
In the example, ¢ = 40°, C = 0.2, E = 5 x 10° Pa, u = 0.25. The influence of 7 on the elastoplastic state
at i = 1 and 0 is analyzed.
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T s
100mm| | 1. lo I8
L |
100 mm P
(@) (b)

Fig. 6. Regular hexahedron rock specimen subjected to the pressure.

Y (mm)

P/2

4 (a ao
50%10 (3\(4) oz =
40
30
20
10%

O B X(mm)
0
ﬁ » »n

0 10 20 30 40 50

Fig. 7. Discretization of the specimen.

The discretization is made for 1/4 region because of the symmetry. The studied region of the specimen is
divided into 50 triangular elements, five rigid elements for the pressure plate and six contact elements
between them (see Fig. 7).

Fig. 8 depicts the horizontal and vertical deformations of the boundary A B. It is seen from the figure that
the deformations are greatly influenced by the coefficient . Under the same pressure P the horizontal
displacement of point A for 7 = 0.1 is of 25 times greater than that for i = 0.2, = 0 and is of 36 times
greater than that for 1 = 0.2, = 1. In case when = 0 the horizontal deformation for the material fol-
lowing the non-associated postulate is smaller than that following the associated postulate of y = 1, but, on
contrary, the vertical deformation is greater.

Fig. 9 gives the distribution of plastic region (z = 0.1, 0.2, 0.4, 0.5) under P = 124 N. The result was
calculated in five increment steps. Obviously, the smaller 7 is, the more damage possibility for the specimen.
Compared with 7, the effect of i/ is much smaller. Nevertheless, the influence of @ reduces rapidly when
> 0.3, and can be ignored for 1 > 0.5.
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Y (mm)
ﬁ=0.2
P=124
50 _
N B
. P
40 \/W=1
0.6 \
30 =254 \
20 Y=1 \
\ \
10 A \
A 1
\ 1 U(mm)
" L A M Y i
0 0.10 0.14 0.18

(@) the horizontal deformation (x direction)

50

40

30

20 —— — Y=1P=124
10 —— y=0,P=124
-V (mm)

0 0.02 0.04 006 0.08 0.10

(b) the vertical deformation (y direction)

Fig. 8. The deformations on the boundary 4B.

When 1< 0.4, the two contact bodies slide in the region of the contact elements 3, 4, 5, 6. The slide
region decreases to the zone of elements 5, 6 when i = 0.5. And only one element remains when 1 = 0.6.
The sliding will end with the further increasing of 7. It is worth noticing that the value of P shows no
influence on sliding.

Table 2 shows the numerical values of the contact force P,. Though P, for elements has different values
with different @, the total force keeps constant. (P, = uP,, omitted in Table 2).

Applying the new approach presented in this paper, fewer base exchanges are required in every incre-
ment, and the result shows great advantages in computational effectiveness and more convenient than other
iterative methods.

Example (3) — The load-bearing capacity of semi-infinite foundation

The load-bearing capacity is studied for a semi-infinite foundation, subjected to the pressure of a ridged
strip on it without friction (Fig. 10). The discretization is made for 1/2 region.

Fig. 11 gives the P-0 relation at the center line of the load P, where curve OABE is obtained under the
associated postulate (y = 1) and OCD under the non-associated postulate without plastic expansion
W = 0).

In Fig. 11, it is seen that the curves O4B and OCD are in good accordance with that of the classical
solution. The result from O to E was computed by 13 load increments and from O to D by 11 increments.
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(@ p=0.1, ¥=0 (b)1=0.2, y=0  1=0.2, \y=1

(©)u=04, y=0 p=04, Y=1 d) 0=05, y=0 H=05, =1
B P=04N P=114N [ |P=124N

Fig. 9. The distribution of plastic region.

P=104 N

Table 2
Numerical values of the contact force P,
T 4 Element number Total forces
1 2 3 4 5 6
0.1 0.0 -5.0 —12.8 —-12.4 —12.7 -13.0 —6.2 —62.1
1.0 —-5.2 —12.7 -12.0 —12.6 —12.8 —6.6 -61.9
0.2 0.0 —6.4 —12.6 -11.9 —11.6 —12.3 -7.1 —61.9
1.0 —6.5 —12.7 -11.9 —11.6 -12.0 -7.3 —62.0
0.4 0.0 —6.0 —12.3 -11.9 —11.0 —11.1 -9.6 —61.9
1.0 —5.8 -12.0 —11.8 -11.0 -10.9 -10.4 —61.9
0.5 0.0 —6.0 —12.2 -11.9 —11.0 —11.2 -9.6 —61.9
1.0 -5.8 -12.0 —11.8 -11.0 -10.9 -10.4 —61.9

lp

Strip foundation

/L1777

Semi-infinite foundation

Fig. 10. Semi-infinite foundation subjected to pressure.
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Fig. 11. P relation.

Let us compare with the numerical solutions obtained by Chen (1982) and Zienkiewicz et al. (1975): Chen
(1982) used 44 increment steps for the computation from O to A4, 269 steps from A4 to B, yet the iteration is
required in every step of computation to avoid divergence, and, finally, the evaluation fully diverged at B
and D. And, for the same example, Zienkiewicz (1975) showed his evaluation fully diverged at £ and D. On
the contrary, using the presented approach of the quadratic programming, the solution does not diverge
along with loading even when the deformation increases rapidly enough. It is obvious that the presented
scheme has great advantages in convergence and convenience.

6. Conclusions

1. In this paper, the unified description for the contact problem and the elastoplastic problem is made by the
variational inequality model. A corresponding functional with the relaxed constitutive relation and the
contact restriction is formed. The new forms have reliable mathematical basis.

2. The quadratic programming is adopted to transform the non-linear problem to a complementary linear
problem for the sake of simplicity in computation.

3. The numerical results show that the present approach has several advantages in accuracy, convergence
and computational effectiveness, and it is more convenient than other iterative methods and other tra-
ditional methods.

4. The method presented in this paper can be used for other non-linear problems with the constitutive equa-
tions in forms of inequalities.
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